Snakes in the (Galactic) Plane: Direct Imaging of Interstellar Turbulence

Bryan Gaensler

Sydney Institute for Astronomy

with M. Haverkorn, B. Burkhart, R. Ekers, K. Newton-McGee, N. McClure-Griffiths, A. Lazarian, N. Gheissari, E. Petroff, T. Robishaw, J. Dickey & A. Green

Published as Gaensler et al., *Nature*, vol 478, p214 (13 Oct 2011)

© New Line Cinema

Polarisation Canals

- Channels of reduced radio polarisation (e.g., Uyanıker et al. 1998; Haverkorn et al. 2000; Gaensler et al. 2001; Reich et al. 2004)
 - seen w. both interferometer & single dish
 - one beam wide
 - not related to structure in total intensity
 - 90° change in pol angle across canal
- Possible explanations:
 - Beam depolarisation due to RM gradients (Haverkorn & Heitsch 2004)
 - Contours of depth depolarisation (Shukurov & Berkhuijsen 2003)
 - Discontinuities in angle due to shocks (Fletcher & Shukurov 2006)

Reich et al. (2004)

Canals in the (Q,U) Plane

- \rightarrow A trajectory in the (Q,U) plane must pass through (0,0) at a canal
- $> 2\theta = \tan^{-1}(U/Q)$ will usually change by 180° at this point

- > Subset of a wider population
- Defining intrinsic properties?

Newton-McGee (2009)

Invariance

- > Rotational invariance
 - Faraday rotation
 - change of coordinate system
- Translational invariance
 - foreground/background screen
 - missing short spacings
- So what are the defining intrinsic properties of a canal?
- Spacing of points along the track
 - "high velocity": potential canal
 - "low velocity": can never be canal
 - → under rotational/translational invariance, canals are contours of high gradient in the Stokes vector

Gradient of (Q,U)

$$\vec{P} = (Q, U)$$
 $\frac{\partial \vec{P}}{\partial x} = \left(\frac{\partial Q}{\partial x}, \frac{\partial U}{\partial x}\right), \frac{\partial \vec{P}}{\partial y} = \left(\frac{\partial Q}{\partial y}, \frac{\partial U}{\partial y}\right)$

$$\nabla \vec{P} = \frac{\partial \vec{P}}{\partial x} \hat{e}_1 + \frac{\partial \vec{P}}{\partial y} \hat{e}_2 = \left(\frac{\partial Q}{\partial x}, \frac{\partial U}{\partial x}\right) \hat{e}_1 + \left(\frac{\partial Q}{\partial y}, \frac{\partial U}{\partial y}\right) \hat{e}_2$$

$$\left|\nabla \overrightarrow{P}\right| = \sqrt{\left(\frac{\partial Q}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial Q}{\partial y}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2}$$

$$\arg(\nabla \vec{P}) = \tan^{-1} \left[\operatorname{sgn} \left(\frac{\partial Q}{\partial x} \frac{\partial Q}{\partial y} + \frac{\partial U}{\partial x} \frac{\partial U}{\partial y} \right) \frac{\sqrt{\left(\frac{\partial Q}{\partial y} \right)^2 + \left(\frac{\partial U}{\partial y} \right)^2}}{\sqrt{\left(\frac{\partial Q}{\partial x} \right)^2 + \left(\frac{\partial U}{\partial x} \right)^2}} \right]$$

The Polarisation Gradient

LinearSpoputherries ecolated this illotary profession (Calaboration of Calaboration of Calabor

Snakes in the Plane

- > |∇P|: locations of high gradient
 (i.e. rapid changes in Q or U with position)
 - superset of potential canals
 - tangled filaments (no "patches" seen)
- > No frequency dependence: not a "contour"
 - → physical structures in interstellar gas
- Not intrinsic to emitting region, no association with structures or gradients in Stokes I, H I, or Hα
 - → gradients are due to Faraday rotation
 - → canals are cusps/jumps in foreground electron density or magnetic field
- Similar structures seen in simulations (produced by shocks, vortices, shear)
 - characteristic feature of magnetised turbulence

 $|\nabla P|$ for MHD simulations and observations (Haverkorn & Heitsch 2004; Gaensler et al. 2011)

Visualising Turbulence

Conclusions, M#\$%@!

- \triangleright Galaxy is suffused with ∇P filaments
 - loci of sharp edges in foreground n_e or B
 - stochastic network of turbulence & shocks
 - sonic Mach number $M_{\rm s} \sim 0.5 2$
- Work in progress:
 - calculation of ∇P for other fields & frequencies
 - quantitative diagnostics of M_s , M_A , Re, etc (moments, genus, probability distrib function; Burkhart et al. 2012)
- Gradient of polarisation can:
 - reveal invariant features in radio polarisation
 - directly visualise interstellar turbulence
 - give quantitative info on turbulent parameters

011) Lemaster &