

Polarization by Craig Anderson

Rapid ASKAP Continuum Survey - RACSPOSSUM workshop27 May 2019

Project objectives

- ASKAP calibration
 - Provide data for the ASKAP Global Sky Model (GSM)
- Generate survey products for scientists
 - Transients (VAST)
 - Polarisation
- ASKAP survey "shake-down"

Survey configuration and parameters

Sky coverage	-90 < δ < +40	
Tile positions	Use current tiling scheme	
Footprint	square_6x6 1.0 - 1.05 degree pitch	Cettogradie
HA/elev limits	To control synthesized beam, shape	
Integration time	15 minutes	TOUTINGE BOD
Frequencies	744 - 1032 MHz; 1300 - 1440 MHz	

Frequency coverage

Radio sky surveys

	Frequency	Res'n	Sky coverage	Sensitivity	Polarization	Ν
RACS	744 - 1032 MHz (700 - 1800 MHz)	15"	-90 < δ < +40	~200 µJy/ beam	I,Q,U,V	> 2 × 10 ⁶
SUMSS	843±1.5 MHz	45"	-90 < δ -30	1 - 2 mJy/ beam	Right Circ	2 × 10 ⁵
NVSS	1.3649, 1.4351 GHz (Δf = 2 × 42	45"	-40 < δ < +90	450 µJy/ beam	I,Q,U	2 × 10 ⁶
FIRST	1.3649, 1.4351 GHz (Δf = 2 × 42	5"	Gal Poles 10575 sq deg	150 µJy/ beam	R,L	1 × 10 ⁶
VLASS	2-4 GHz	2.5"	-40 < δ < +90	120 μJy/ beam (69 μJy/	I,Q,U	~ 5 × 10 ⁶

Progress to date

will be pleased the - 's less

• Julie BAnfield's table

https://docs.google.com/spreadsheets/d/1DSjXx_vjC4VjtayEobmQJn7yAhrPEfVdGV3XH924G4o/edit?ts=5cc699cd#gid=1244421999

0	Science ready images noted by STATE=IMAGED will be placed			In => /group/askap/jbanneld/kAGS/imAGES/													
4	-																
14	SRC	FIELD_NAME	SBID	STATE	RA_HMS	DEC_DMS	RA_DEG	DEC_DEG	OBS_FREQ	FOOTPRINT	РІТСН	ROTATION	DURATION	POL_MODE	POL_AXIS	SB_TIME	SB_STAR
774	13	4 RACS_test4_1.05_2018-50A	8646	OBSERVED ~	20:18:28	-50:05:45	304.615383	-50.095908	864.5	square_6x6	1.06	45.00	900.00	pa_fixed	-45.000	13120)
775	17	6 RAC8_test4_1.05_2112-43A	8646	OBSERVED ~	21:12:33	-43:52:21	318.139533	-43.872603	864.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	13120)
775	13	6 RACS_test4_1.05_2132-50A	8646	OBSERVED -	21:32:18	-50:05:45	323.076921	-50.095908	864.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	13120)
777	14	5 RACS_lest4_1.05_0304-50A	8673	OBSERVED -	3:04:37	-50:05:45	46.153846	-50.095908	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
778	10	8 RACS_kest4_1.05_0310-58A	8673	OBSERVED -	3:10:35	-56:18:23	47.647058	-58.306294	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	5
779	10	9 RACS_lest4_1.05_0352-56A	8673	OBSERVED -	3:52:66	-56:18:23	58.235292	-58.308294	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	5
783	11	0 RACS_lost4_1.05_0436-58A	8673	OBSERVED -	4:35:18	-56:18:23	68.823529	-58.308294	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
781	11	11 RACS_lest4_1.05_0517-56A	8673	OBSERVED -	6:17:39	-56:18:23	79.411762	-68.308294	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
782	7	9 RACS_lect4_1.05_0547-82A	8673	OBSERVED -	5:47:35	-82:29:55	86.896550	-62.498628	884.5	square_6x6	1.06	45.00	900.00	pa_fixed	-45.000	22302	2
783	8	0 RACS_lest4_1.05_0837-82A	8673	OBSERVED ~	6:37:14	-82:29:55	99.310342	-62.498628	884.5	square_6x6	1.06	45.00	900.00	pa_fixed	-45.000	22302	2
784	8	1 RACS_lest4_1.05_0728-82A	8673	OBSERVED -	7:26:54	-82:29:55	111.724138	-62.498628	884.5	square_6x6	1.06	45.00	900.00	pa_fixed	-45.000	22302	2
785	8	2 RACS_lest4_1.05_0816-62A	8673	OBSERVED -	8:16:33	-82:29:55	124.137929	-62.498628	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
785	8	4 RACS_lest4_1.05_0955-82A	8673	OBSERVED -	9:55:52	-82:29:55	148.965517	-62.498628	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
787	11	9 RACS_lest4_1.05_1056-56A	8673	OBSERVED -	10:56:28	-56:18:23	184.117846	-58.306294	884.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
755	12	0 RACS_lest4_1.05_1138-56A	8673	OBSERVED -	11:38:49	-56:18:23	174.705879	-58.308294	884.5	square_6x6	1.05	45.00	900.00	pa_lixed	-45.000	22302	2
759	16	0 RACS_lest4_1.05_1216-43A	8673	OBSERVED -	12:16:45	-43:52:21	184.186046	-43.872603	884.5	square_6x6	1.05	45.00	900.00	pa_lixed	-45.000	22302	2
793	12	1 RAC5_lest4_1.05_1218-50A	8673	OBSERVED *	12:18:28	-50:05:45	184.615383	-50.095908	864.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
791	8	7 RACS_test4_1.05_1221-56A	8673	OBSERVED *	12:21:11	-56:18:23	185.294117	-55.306294	864.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
792	12	2 RAC5_lest4_1.05_1255-50A	8673	OBSERVED -	12:55:23	-50:05:45	193.846150	-50.095908	864.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
793	16	2 RAC5_lest4_1.05_1323-43A	8673	OBSERVED -	13:23:43	-43:52:21	200.930229	-43.872603	864.5	squara_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
794	12	3 RAC5_lest4_1.05_1332-50A	8673	OBSERVED -	13:32:18	-50:05:45	203.076921	-50.095908	864.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
705	8	9 RACS_lest4_1.05_1345-56A	8673	OBSERVED -	13:45:53	-56:18:23	206.470588	-56.306294	\$84.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
795	12	4 RACS_test4_1.05_1409-50A	8673	OBSERVED -	14:09:14	-50:05:45	212.307692	-50.095908	\$64.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
797	9	0 RACS_lest4_1.05_1428-56A	8673	OBSERVED -	14:28:14	-56:18:23	217.058821	-56.306294	\$84.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
798	12	5 RACS_test4_1.05_1446-50A	8673	OBSERVED -	14:46:09	-50:05:45	221.536458	-50.095908	664.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
799	9	H RACS_test4_1.05_1510-56A	8673	OBSERVED -	15:10:35	-56:18:23	227.647058	-56.306294	664.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
800	12	6 RACS_test4_1.05_1523-50A	8673	OBSERVED -	15:23:05	-50:05:45	230.769229	-50.095908	664.5	square_6x6	1.05	45.00	900.00	pa_fixed	-45.000	22302	2
		1 01 00 1	0.074	000000000	11.10.57	10.05.00		10 202000			4.05	10.00	202.20	1. P. 1. A.	15 000	77.44	

6

RACS Test 4 - Summary

Credit: Emil Lenc

RACS epoch 1(?)

RACS epoch 1(?)

Discussion & questions

Data processing

calibration

- standard procedure with 1934-638
- imaging params
 - image & cell size 5000 X 2.5"
 - weighting (robustness value) r = 0.0
- self-cal strategy
 - one cycle, phase only, $\tau = 60s$
- astrometry
 - bootstrap from fields containing astrometric standards
- polarisation
 - standard X-Y phase cal
 - off-axis procedure tbd
- mosaicing
 - into 36-beam tiles; + groups of tiles ???

Expected performance

- resolution
- image noise
- uniformity of image noise
- possibly galactic latitude effects
- source detection limit (vs frequency?)
- astrometry
- flux accuracy
- polarimetric performance

RACS planning

- Welcome
- Project personnel
- Project objectives
- Survey configuration and parameters
- Data processing
- Data products
- Data release
- Expected performance
- What's missing?

Data release

- 1. Survey parameters sky coverage, frequency coverage, integration time.
- 2. Observing configuration footprint, whether frequency-dependent, tile positions, HA/elevation limits
- 3. Data processing sequence calibration, imaging params (robustness, etc) self-cal strategy, astrometry, polarisation, mosaicing
- 4. Expected performance resolution, image noise, uniformity of image noise, possibly galactic latitude effects, source detection limit (vs frequency?), astrometry, flux accuracy, polarimetric performance, ...
- 5. Data products catalogues (what quantities), images (tiles?, all-sky?, recomposed into differently sized tiles, ???)
- 6. Data release presumably CASDA;
- 7. Timing observations, data release
- 8. Process for generating the Global Sky Model;

>> What's needed to gather information for the above:

- >> 1. current trials of reducing RACS first pass
- >> 2. achieved performance from first pass
- >> 3. outcomes of polarisation analysis from POSSUM busy week

>> 4. I think that in addition to this full pass at 746 - 1032 MHz, we could use a small test (~a dozen tiles) at all the other parts of the band; these will compromise the 288MHz bandwidth because of RFI.

>> 5. A meeting - soonish - to turn the above into plan for the plan; I expect I have overlooked some stuff.

