ASKAP Computing Status

Tim Cornwell Matthew Whiting

CSIRO ASTRONOMY & SPACE SCIENCE www.csiro.au

Telescope Operating System (TOS)

Responsibility for overseeing the monitoring and control of the overall ASKAP system, including

- Telescope Operating Manager (TOM)
- Monitoring Archiver (MoniCA)
- Alarm Management System
- Logging
- Operator Displays

TOS software periodically released, usually aimed at providing new features/functionality for particular milestones.

• Currently at 0.11 (released start March), with 0.12 due start June

TOS 0.12

Released in time for next SCOM MRO visit New features will include

Control System Studio (CSS) for ASKAP

BEAST alarm handler

BOY GUI support

Data Browser

Logger

Synchronized startup of 3 digital backends

BMF data capture and software correlation (Max's correlator) via OSL of multiple beamformers

Integrate Eaton Power Supply IOC into TOS metapackage

Implement Failure Modes

Other activities

Software correlator

- Very valuable for MRO work
- Max to visit MRO in July

ADE

• ADE Backend common software framework

Science team interactions

- Produced version 2 of ASKAP Science Processing document
- Have sought input from science teams on improvements to source finding code
- Provided access to our prototype for their testing
- Plan to work closely with SCOM-2 during BETA observations

SKA work package preparations

Wide field imaging

Quadratic phase term added to Fourier Transform

$$V(u,v,w) = \int \left[\frac{I(l,m)e^{j2\pi w \left(\sqrt{1-l^2-m^2}-1\right)}}{\sqrt{1-l^2-m^2}} \right] e^{j2\pi(ul+vm)} dldm$$

Slices in data space

Convolution in

data space

Position and width errors in snapshot imaging

Position and width in w projection/snapshot imaging

Optimum transition point in hybrid

Why do we need hybrid wide field algorithms?

Trade off space is large

- Scientific performance
- CPU
- Wall clock time
- Memory
- Memory bandwidth

No single wide field algorithm will suffice

Need very flexible hybrids

- AW Projection
- W Stacking
- Snapshot imaging
- Faceting

Autotuning

Changes in imaging during scaling work

AWProject (2007) Convolution

- W projection + A projection (for primary beam)
- Too much CPU
- Too much memory for convolution function

AProjectWStack (2008)

Convolution/Multiplication

- Apply W term in image space
- Much less CPU
- Too much memory for w stack

AWProject + trimmed convolution function (2009)

Convolution

- Only apply and keep non-zero part of convolution function
- Still too much memory for convolution function

AWProject + trimmed convolution function + multiple snapshot planes (2011)

Fit and remove w=au+bv plane every 30 - 60 min

Convolution + slices

Small memory for convolution function

Serialise normal equations piece-by-piece for MPI (2011)

• Cuts down short bump in memory use

No current algorithm will scale as-is to full-field longer baselines (ASKAP 6km)

ASKAP imaging scaling curve

Multi-scale Multi-frequency Synthesis

MFS necessary to correct for source changes over ASKAP bandwidth MFClean in MIRIAD

Multi-scale multi-frequency synthesis algorithm

- Urvashi Rau PhD (CASS/NMT/NRAO)
- Rau and Cornwell, A&A

Parallel version in ASKAPSoft, currently memory hungry Also testing Compressive Sampling algorithm

Science Processing Data Challenges

Imaging data challenge

- Develop simulated processing pipeline on Pawsey 1A supercomputer
 Create complete pipeline
 Use as regression test
 Drive improvements in software to be ready for BFTA
- Visibilities simulated from model of sky & telescope
- Then treated as we would real observations

Ingest data challenge

 Simulation of the ingest pipeline running on Pawsey 1A supercomputer

Control ingest process via TOS

Move visibilities & metadata from MRO to Pawsey 1A

Pawsey High Performance Computing Centre for SKA Science, Perth

A\$80M, funded by Australian Federal government 8800 core machine now in operation

- HP cluster in a box at Murdoch University: EPIC
- ~ 120 on Top 500
- ASKAP used EPIC as early adopters
- Now regular use 8 Mhour mid 2012

Petascale system by 2013

25% for radio astronomy

Network link

From start of April, have access to 1Gb link from Perth to MRO Replaces the ADSL connection, and allows computers to live on the CSIRO WA address space

Numerous benefits

- Allows faster access to MRO computers, via VNC sessions
- Ability to better support operations at MRO from Marsfield
- Phones and network access at MRO!

Future work

- Connection to Pawsey Centre
- Await conclusion of negotiations on full bandwidth link

Summary of imaging capabilities

Highly parallel code

- Necessary for 10TB/hour throughput
- ASKAP requires ~ 10000 cores

AWProjection + snapshot imaging

- Wide field imaging with low memory costs
- AProjection allows frequency dependent polarised primary beams

Post-gridding preconditioning

To avoid multiple passes through the data for visibility weighting

Multi-Frequency Multi-Scale deconvolution algorithm

For wide-band (300MHz) imaging

SNR-based CLEAN

To avoid cleaning low sensitivity regions

Summary

ASKAP computing capabilities coming along well

Within a factor of a few for calibration and imaging

New problems always popup: cube merge I/O limited

Still lots of work to do

Instability in imaging program now a worry

Data Challenge now being deployed onto Pawsey epic system

Thank you

CSIRO Astronomy & Space Science Matthew Whiting ASKAP Computing

t +61 2 9372 4683

E matthew.whiting@csiro.au

w www.atnf.csiro.au/projects/askap

CSIRO ASTRONOMY & SPACE SCIENCE www.csiro.au