(Mis-)Adventures in RM Synthesis Land

Lawrence Rudnick Minnesota Institute for Astrophysics

http://micro.magnet.fsu.edu/primer/techniques/polarized/gallery/pages/opossumhairlarge.html

Experiments with

J-VLA: GOODSN field, (F. Owen)

Perfect World 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 0 100 200 900 1000 Lambda^2 100+80 1.5

Identifying Real World Problems inserted 125 sources @ 20 different fluxes

GOODSN EVLA: 3.5µJy rms

How far to ... RM clean (AIPS FARS, L. Kogan)

Polarized fluxes are biased by degree of cleaning

How far to convolve RM spectrum?

20 rad/m2 ?

How far to convolve RM spectrum?

"Alpha"=α+primary beam VS. distance

Spectral correction

BRIGHTSUB.AFARam.2

Spectral corrections are important. POSSUM might get away with nominal correction.

RM scatter

RM errors follow sqrt(S:N) down to ~5, then blow up.

Below that, may still be useful statistically – need to identify possible POSSUM uses..

Ideal World: experiments with 2 components, no noise!

Ideal World: experiments with 2 components, no noise!

Faraday spectra (10,800 little experiments)

 $RM \rightarrow$

 $RM \rightarrow$

Varying ampl of 2nd component, → errors in amplitude of 1st

 $RM \rightarrow$

RM input:

100,60

Even with 2nd component 2x RMTF away, Major changes in Amp & RM of 1st

2P

How bad is it? no noise!

It's bad – the limiting factor.

The presence of a second comp. within RMTF will cause rms errors of 3-10 rad/m2.

POSSUM lessons

- We have to strategically choose amount of cleaning, amount of RM convolution
- Need to do some level of spectral correction
- Statistical info may be valuable even at low S:N
- Second RM components, even far from first, wreak havoc on RMs and Amplitudes
- Measuring P_{rms}/P_{mean} may help a little

Varying amplitude of 2nd component

Ratio: 0.1 1

