

DUNLAP INSTITUTE for ASTRONOMY \& ASTROPHYSICS

SN1006 Science with POSSUM

EMU/POSSUM Busy Week Socorro, NM
December 18, 2019

Jennifer West Shannon Vanderwoude

POSSUM Team
(*) CIRADA
(縩 Dunlap Institute for
Astronomy \& Astrophysic
UNIVERSITY OF TORONTO

ASKAP SN1006 Test Field

 Observed February 2019 288 MHz band ~900 MHz $6^{\circ} \times 6^{\circ}$()
()

DUNLAP INSTITUTE
for ASTRONOMY \& ASTROPHYSICS

* Dunlap Institute for
(1) Astronomy \& Astrophysics
B vector map with $\mathrm{RM}=25 \mathrm{rad} / \mathrm{m}^{\wedge} 2$ for correction

ASKAP (S. Vanderwoude)

What do magnetic fields tell us about cosmic ray acceleration?

Soft X-Rays
 Hard X-Rays

Credit: NASA/CXC/Middlebury College/F.Winkler

ASKAP (red) + Soft X-rays (green) + Hard X-rays (blue) CHANDRA

Older and more evolved supernova remnants $->$ Magnetic fields are tangential (ambient Galactic field has been compressed)

SN1006 is a younger, historical type supernova remnant

Magnetic fields is not entirely radial

In the process of evolving into the Sedov phase?

JF12 Galactic Magnetic Field Model (top down and side views)

Galactic Magnetic Field Model of Jansson \& Farrar 2012

Distance to SN1006 is $\mathbf{1 . 6} \mathbf{- 2 . 2} \mathbf{~ k p c}$

Cosmic Ray Electron Distribution

Isotropic

Quasi-perpendicular

Quasi-parallel

Simulated Synchrotron Emission

S. Vanderwoude

SN1006 - SB8280 peak RM map

S. Vanderwoude

Galactic Magnetic Field Model of Jansson \& Farrar 2012

Distance to SN1006 is $\mathbf{1 . 6} \mathbf{- 2 . 2} \mathbf{~ k p c}$

S. Vanderwoude

Next Steps

- Compare to the model
- RM gradients across the field?
- Polarization angle map
- Need single dish short spacings
- New analysis of SN1006
- High sensitivity data
- Broad bandwidth -> RM synthesis

DUNLAP INSTITUTE for ASTRONOMY \& ASTROPHYSICS

www.dunlap.utoronto.ca
 f \boldsymbol{y} ソ 监 ๒

Cross-matching RMs with other data sets

- No cross-matching of RMs currently in the scripts
- Plan to add average per field RM with all sky map
- SN1006 field measured: $7.7 \pm 27.1 \mathrm{rad} / \mathrm{m}^{\wedge} 2$
- Oppermann: $8 \pm 28 \mathrm{rad} / \mathrm{m}^{\wedge} 2$

Reynoso et al. 2013

Quasi-perpendicular

Quasi-parallel

Current favoured model of SN1006 Katsuda+ 2017 review

G327.6+14.6

$5 \sqrt{2}$
0.5

